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DETECTION OF CHANGES IN THE CHARACTERISTICS OF A GAUSS-MARKOV PROCESS

By

P. M. Newbold and Y. C. Ho

Division of Engineering and Applied Physics

Harvard University, Cambridge, Massachusetts

ABSTRACT

By an extension to the theory of sequential detection with dependent
measurements, it is possible to develop a Sequential Probability Ratio
Test (SPRT) to detect changes in regime in a Gauss-Markov Process rather
than detecting which of two regimes exist. It is shown how a posterior
form of this extended SPRT may be simplified to reduce computational
complexity. The simplified SPRT's are in fact modifications of the ori-
ginal SPRT detecting the regime and not the change. The tests are applied
to the problem of fault detection in a gyro navigational system: the

results of a detailed computer simulation are given.



1. Introduction

It may often be of crucial importance to determine whether or not a
fault condition has arisen in a stochastic system, at the same time as
observations from the system are being used for some specific purpose.

For example, if we treat a gyro navigational system as a stochastic system,
it may be of vital interest to be certain that calculations based on the
system output are not incorrect because of a fault condition. Although

in this paper we shall only deal with faults which can be interpreted as
changes in the variance of random inputs to a Gauss-Markov process, the
theoretiéal developments outlined can equally be applied to the detection
of other types of characteristic change which affect the output of the
random sequence. The computational difficulty may be more or less involved
depending on the nature of the change. 1In terms of the above example, the
fault condition arising may be an increase in the variance of the drift
rate of the gyro.

It should be noted that there are two distinct but related problems.
The first is detecting whether the characteristics of the system have one
hypothetical set of values as opposed to a second set. The second pro-
blem is the detection of a change of the characteristics from the first
set of values to the second as it occurs. We shall deal with the second
of these problems.

The detection of a characteristic change is a problem in statistical
decision theory. The basic results used here are those of sequential
analysis, originated by Wald {1]. The analysis determines from which of
two probability distributions a sequence of uncorrelated samples comes,

to within set error bounds. The procedure is to derive from the sequence



up till a time k a likelihood function 6(k) . Its value is tested
against two thresholds related to the set error bounds. If either of the
thresholds are exceeded then the test is terminated by taking the appro-
priate decision as to which probability distribution is shown to be
correct. If neither threshold is exceeded, then a (k + 1)th sample is
taken and the same procedure repeated for the updated sequence. A de-
tailed and very clear treatment of this Wald Sequential Probability Ratio
Test (from now on abbreviated to SPRT) is given in ([2].

The theory was extended to sequences of correlated samples by
Bussgang and Middleton [3] and more recently a general extension has been
derived by means of the state space approach by Schweppe {4]. 1In the
present paper we shall use this approach exclusively.

Section 2 is devoted to a fairly brief exposé of Schweppe's solution,
since although Schweppe only deals with the first of the two problems
previously stated, the solution to the second problem is of a closely
similar form. In Section 3 the complete solution to the second problem
is given for the case where the characteristic change is a change in
input variance. This solution retains the advantage of the SPRT in the
solution of the first problem in that it has the property of being the
test which on average requires the minimum number of samples of all tests
to come to a decision. In Section 4 several simplified versiomns of the
test are presented which offer considerable computational savings. An
example of the test applied to a gyro navigational system is presented
in Section 5. The Appendix is devoted to the derivation of performance

figures for the simplified tests.




It is stressed again at this point that although the solutions are
couched in terms of detecting a change in the input variance to a Gauss-

Markov process, other forms of characteristic change can equally well be

detected by this method.

2. The Sequential Probability Ratio Test for Correlated Samples

The aim of this section is to summarize the derivation of the SPRT
detecting whether the noise input to a Gauss-Markov process has one
variance or another. We do not concern ourselves with any possible change
from one value to the other. The correlated samples which provide data
for the test are the output from this Gauss-Markov process.

Let the process be charaéterized by the following equations:

x(k + 1) = ox(k) + w(k) , (1)

z(k) = Hx(k) + v(k) ; (2)

where x(k), w(k) are vectors and the observation z(k) is a scalar.
v(k) 1s a random observation error of zero mean and variance R. At any
time k we are required by performing a test on the sequence of measure-
ments 3(k) = {2(0),z(1)...2(k)} to find which of the following two

hypotheses is true:

Hypothesis {40 : the variance of w(k) 1is given by Q = Q0

Hypothesis 1‘1 : the variance of w(k) 1is given by Q = Q1

It is convenient but not crucial to assume that the mean of w(k) is

identically zero. At any time k the SPRT consists of determining the

likelihood function

p{30K) /34 } ,
Gk = log m . (3)



where p{}(k)/i40} is the joint probability distribution of the sequence
under the assumption of hypothesis ‘4b , and p{}(k)/f&l} is the corre-
sponding distribution under the assumption of the alternate hypothesis.
For independent samples we can write Eqn. (3) in the recursive logarithmic

form:

plz(k) /¥4 )
" T C1 18 TGO, “)

The value of ek is then tested against two threshold levels A and B
(where A > B):

1f ek £ B the test is terminated with the choice of 4Hb .

If ek 2 A the test is terminated with the choice of ‘+1 .

If A > ek >B a k+lth sample is taken and the test is repeated.
The thresholds A and B are chosen in the following manner. We specify
two error probabilities, a and B8 :

a 1s the probability of choosing *41 when *40 is true;

B 1s the probability of choosing *40 when ’41 is true.

Then

l -8 8
. and B = log 1- o

A= log . (5)

Now since the sequence of samples is in reality correlated we can no
longer reduce Eqn. (3) to Eqn. (4), and the convenient recursive form 1is
lost. However, luckily it is possible to circumvent this problem. It is
well known that the Kalman filter which gives the optimal estimate
x(k/k) [given the sequence of measurements 3(k) ] of the state of a
Gauss-Markov process has the property that the sequence of errors generated

between the measurement z(k) and its estimate 2Z(k/k-1) 1is independent.




Let us present this more precisely. Since we have two hypothetical
Gauss-Markov processes, differing by the value of Q , we shall have two
Kalman filters. In their equations given below, the subscripts correspond

to the subscript of the corresponding hypothesis.

ii(k+1/k+1) = Qii(k/k) + Ki(k + VD{z(k + 1) - chii(k/k)? (6)
Ki(k +1) =P (k+ l)HTR-l @)
ri = 0,1
M, (k + 1) = ¢Pi(k)¢T +q, (8)
M, (k + l)HTHMi(k + 1)
Pi(k + 1) = Mi(k +1) - ‘ T 9)
M, (k + 1)H + R

Then the two sequences

‘Eiuo(k +1) = {ey(0),eq().rueg(k + DY ;

3%&+1) (e,(0),e;(D.ve (k + D} 5

where
es (k) = z(k) - ii(k/k—l) = z(k) - Héii(k—l/k—l) i i=0,1 (10)

are each independent random sequences.
To calculate Gk we need to know the mean and variance of these

sequences. It may easily be demonstrated that these are given by

R

i—:—ﬁizziy ; 1i=0,1. (11)

E{si(k)} =0, Var{ei(k)} 4 Oi(k) =

If we further suppose that before the start of the test the Kalman filters
have been run for a sufficient number of time intervals for the variance

equations, Eqns. (8)-(9), to have reached their equilibrium solution, we



need only consider two asymptotié values of Var{ei(k)} :
- |
o) = R/(1 - HK1> ; 1 =0,1 . (12)
The SPRT is now carried out using the samples of E* and ‘E,“ .
.0 1

We have

p{E(k + l)/141}

Opt1 = 18 TTEG + D/, (13
which reduces to
p{el(k + 1)} 9%
ek+l = ek + log p{EO(k F D7 = ek + log ;I)
2 2
€ €
11 %o
2 o2 o2 . (14)
1 0 k+1
The testing algorithm is as follows:
(a) take a new measurement z(k + 1) ;
(b) update the estimation equations
x, (k+1/k+1) = 0% (k/k) - K {z(k + 1) - HOX, (k/K)} 3 (15)

i=20,1;

(c) derive the errors ei(k +1) , 1 =0,1;

(d) form the new likelihood function given by Eqn. (14) ;

(e).test against the threshold levels as previously explained —
if the test does not terminate, take a new sample and repeat the operation.

The remaining point to be cleared up is what initial value to give
ek before the start of the test. For example if we choose 00 =0 it
would imply that before the start of the test we had no prior knowledge
whether i+0 or *ﬁi is true. We shall see how the starting values are

connected with different prior assumptions in the following sections.




3. The Exact Solution to the Problem of the Detection of a Change

In this section we solve the problem of the detection of a change in
the variance of the input to the Gauss-Markov process represented by
Eqns. (1)-(2). Consider a ratio test which is started at time k = n .
At a subsequent time n + j 1f we have made no decisions and are still
testing, we are uncertain whether

(a) no change has occurred in the system at all to date;

(b) the change occurred before the beginning of the test;

(c) the change occurred immediately after one of the intervals n + i
i=0,1,2,...,5-1 .

Thus at time n + j we can list j + 2 exhaustive and mutually exclusive

hypotheses:
Hypothesis f*o : no change has occurred at any instant;
Hypothesis'“io : the change occurred before the test started; (16)

'Hypothesis'“'li : the change occurred immediately after interval
ﬂ+j"'i;i'1,2,...,j .
To each one of these hypotheses we can assign probabilities of occurrence

prior to the start of the test. Let these be denoted respectively by
p{ffo} , p{i410} , p{i‘li} s i=1,2,...,5 . (17)

Note, however, that hypotheses **0 , *‘li s 1 =1,2,...,j assume in each

case that at time k = n the process is in the pre-change state. Thus
p{#,} = p{'“n} s 1=1,2,00., . (18)

Taking into account this prior information, we can write down the expression



for a posterior probability ratio function:

B o~

1
Y p{€(n + §)/¥.  lpW.} + p{€(n + j) /%,  tpi¥ .}
EN 11'P™ 10'P™Mp (19)

PIE( + 3)/% Ipt,)

Notice that this time because of the summation of the probabilities in
the numerator we have not been able to use the convenient logarithmic
form. Of itself this does not detract from the usefulness of the test,

but makes the analytic determination of the mean and variance of 6, very

h|
difficult.

Let us look more closely at some of the implications of this result.
First of all, if we cannot assign prior probabilities of occurrence of

each hypothesis, then we assume pf‘#o} - p{i‘lo} and Eqn. (19) reduces

to:

1 3 p{€n + J)/“ p{E(n + j)/‘“lo
] Zl p{&(n + j)/“ } p(E(n + j)/‘# }

(20)

There is another, much more important implication of this result. In the
previous section we saw that two Kalman filters were required, one based
on the assumption of hypothesis i‘o and the other on assumption of ‘#1
In the present case as may be expected, we again need one Kalman filter
per hypothesis, that i1s, j + 2 filters.

Let us denote the Kalman filter based on '“0 by '30 and the
Kalman filters based on ""11 by ?11 s 1 =0,1,2,...,§ . Table 3.1

below summarizes the relations between the hypotheses, filters, and values

of input variance Q .




Hypothesis Filter Value of Q
¥, % %
10 %10 Q
i‘ll ﬁ’ll
. . QO up to time
*4: 3ﬁ
11 11 AR
. . Q, fromn+ j - 1+1
B4 I 1
13 1j ton+ j

Table 3.1 Kalman filters required for detecting changes.

Although there are only two basic structures for the filters, except in
trivial cases the number cannot be reduced because each filter is subject
to a transient at a different time interval, since the corresponding
ﬁypothesis dictates a change in Q at that time interval.

Thus, as opposed to the SPRT discussed in the previous section, the
computations for this test get progressively more voluminous as time goes
on. Even if the test is truncated after a fixed number of intervals and
restarted, this is a great disadvantage, and has led to the development
of the simplifications introduced in the following sectionms.

Let us now consider how to derive an iterative relation for the
likelihood function in the form given in Eqn. (19). Remembering that

E(k) still represents an independent sequence, Eqn. (19) can be written

J J
TT ple(n + s)/*4li} TT ple(n + s)/i@lo}p{*‘lo}

0, =-jl— ) 3;1 + S;I ; (21)
=1 TT ple(n + s)/34 ] T ple(n + s)/'“o}p{‘“o}
s=1 s=1



or since

ple(n + s)/i#ii} = p{e(n + s)/ito} ; s=1,2,...,3-1,

I pleta+s)/bp ) 3 pleln+ ) /4 tpiH )
+
g=j-1+1 ple(n + s)/H# } ) ple(n + s) /% Ip (¥}

J
-1 Z
j 3 4=
(22)
As in the previous section we suppose that before the test started at time
k = n the Kalman filters had been run for a sufficient number of time
intervals for the variance equations to have reached their equilibrium
solutions. Table 3.2 gives the notation for the asymptotic values of the

gains K(k) and variances Var{e(k)} for each filter.

Asymptotic values at start of test
Hypothesis Filter as k + o
Filter gain K(k) | Variance of error oz(k)
3 2
¥, 0 ¥o %
2
10 ¥ | 10 °10
“11 :;11
. . 2
. : KO %
ﬂ1_-1 ';lj

Table 3.2 Asymptotic values for the Kalman filters.

Because some of the Kalman filters change their parameters during the test
we need to precalculate the generated transients in the gains and variances

as well as just the asymptotes. Figure 1 gives the notation used. We can

-10-
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now write down the complete testing algorithm. At the jth interval
after the start of the test:

(a) take a new measurement z(n + j) ;

(b) update the j + 2 estimation equations of the type of Eqn. (15)
according to the logical schema of Figure 2. ;
(c) derive the j + 2 errors eo(n + 3) , sli(n +3) ;1i=0,1,2,...,3 ;
(d) form the new likelihood function, which for pf“lo} = p{’ﬁo}

may be reduced from Eqn. (22) to the following explicit recursive form:

j
1 . -
8, = 3 i§£w1<n + DI+ v+ ) 5 w3 =1 (23)
1 1, 1 Ei eé
3 145 exp-3| 3 - 7 [V 0+ i - 1)}
i=1] "4 oi 00
n+j
% 1 Eio eg -
M ) i N IS Bl O
10 10 %

(e) test as before against two threshold levels A and B . If the
test does not terminate, go back to step (a) and repeat the procedure.

There is a slight difference in the derivation of the threshold
values for this test.t‘Weigéecify the following error probabilities:

a : probability of rejecting hypothesis . when true;

0

B, 5 1=0,1,2,...,] : probability of rejecting 1411 when true;

and then the thresholds are given by

: h
s Ll-8 p._B . S |
A s B 1- 5> where B8 z (24)

i .

-12-
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This completes the derivation of the algorithm for testing a Gauss-
Markov process for a change in a characteristic. As well as the obvious
disadvantage of the increase in volume of computation as the test pro-
gresses, there is a second problem with this test. Whereas the SPRT
described in Section 2 has a corresponding continuous time version, which
can be obtained by taking the limit as the sampling interval decreases to
zero, if this is attempted with the present SPRT we find we need an in-
finite number of Kalman filters. This is clearly impracticable.

In the next section, then, we remove these objections by obtaining
some simpler forms of test. We should expect, although we do not prove
that these tests will not perform as well as the exact test. In Section 5
experimental results show that the performance loss may be acceptable for

some applications, at least.

4., Simplified Change Detection Tests

In the previous section we saw the need for simplified versions of
the exact test for detecting a change in the characteristics of a process.

The simplifications may be considered as arising from simplification of

the expression

1 3 e+ /M) p(EM + )/l )
] Zl p{€(n + 1) /%, } TP + j)/i#o}p{i$o}

(25)
One simplification is to assume that the process is known not to have

changed before the test started. This removes the second term from Eqn.

(25) since p(i‘lo} = 0 , leaving:

-14-




p{&€(n + j)/'ﬂ }

_1
3 .Z.l plE( + j)/* T (26)

This may very well be a reasonable assumption; unfortunately it does not
lead to a significant reduction in computational effort because the sum-
mation term is still present in the expression.

If we therefore remove this term instead, giving

p{€(n + j)/‘“lo} p{'ﬂ'lo}
3T plE@ + /MY pTH ) , (27)

what we are now saying in effect is that the change cannot ever occur during

the test. This is now merely the form of the SPRT for the first problem,

p{¥ 10}

Ty may be inter-

which we dealt with in Section 2. The factor
pi¥,

preted as the initial value en . Although on the face of it this simpli-
fication is not what we want, we can in fact derive a very useful form of
test from it. The idea is that to make the best use of prior information,
each test should start out using the result of the previous test. So we
write

p{€(n + j)/*‘lo}
= : . B ; (28)
j  pl&(m + J)/*#O}

since from Eqn. (24), setting B = BO we have

p{*410} =8 ; p{iﬁo} =1 ~ a; and thus en = =B .

Using Eqn. (28) implies that we are certain to within the error bound of

-15-



the previous test that no change has occurred. We can represent the effect
of a logss of confidence during the time lapse between tests by writing

p{€(n + j)/**lo}

%) " P EG + W)

.AB . (29)

where )\ might be a positive, monotonically decreasing function of the
time lapse, depending upon any assumed failure distribution for the system.

Essentially, we are now considering again the original form of SPRIT,
but with the additional feature of incorporating knowledge available prior
to the start of the test. (To use an analogy culled from estimation
theory, the relationship between the usual SPRT and the present test as in
Eqn. (28) is analogous to that between a least squares fit filter and a
Kalman filter.)

We shall call this form of testing 'occasional testing'. Operationally,
the present test implies that the change in the input variance occurs between
tests only. All prior knowledge given or gained during the previous tests
on ‘*10 or **0 and the failure mechanism are summarized in the initial
value of ek at the start of a test.

There are two drawbacks to this test. If the change occurs during a
test and not, as assumed, between tests, then we do not immediately know
what is going to happen. If the change does occur between tests then we
lose time by having to wait until the next test to detect it.

In spite of this, the test may still be useful in situations where
it is not crucially important to detect a change immediately after it
happens.

Each of the previous tests terminate if either of the two thresholds

A or B 1is crossed. We can define a 'continuous test' which only

-16-




terminates when the threshold A 1is crossed, indicating a change. Before

the change occurs, of course, the value of 6, will move toward threshold

k
B . The rule

p{€(n + j)/i#lo}
ej = Max T +j)/‘ﬂ0} , B (30)

is used and testing is continued normally if B is reached. 1In other
words, we immediately start a new test as soon as i#o is accepted. This
form of test is approximately equivalent to the 'occasional test' without
confidence loss, but starting a new test immediately the change occurs.
Thus intuitively, the 'continQOus test' will always do better than the
'occasional test', on average.

It is possible to calculate the average number of samples required
to reach a decision fairly readily in the case of the simplified tests.
A derivation of the average sample numbers in the 'continuous test' for
the scalar case is given in the Appendix. The corresponding calculation
for the 'exact test' is very difficult because the convenient logarithmic
form cannot be used, and is not given here.

To summarize the last two sections, we have described three types
of test by which we can detect a change in variance of the input to a
process. The first test, the 'exact test', was designed to detect the
change itself as it occurred. The 'occasional test' and the 'continuous
test' were adaptations of the simple SPRT detecting only whether one
condition or another existed, but incorporated the confidence gained from
previous tests, i.e. a posterior form of SPRT. These tests could also be
interpreted as simplifications of the 'exact test'.

In the following section we apply the results to the detection of

faults in a gyro navigational system.

-17-



5. Application to Fault Detection in a Gyro Navigational System

We will show how the tests of the previous sections may be used to
detect increases in the drift rate in a gyro system caused by incipient
gyro failure. An extremely simple model of the gyro system will be used
although this restriction is only imposed‘for the sake of clarity.

Suppose that the gyro system is installed as a navigational aid in
an aircraft. There will be three independent gyros aligned along ortho-
gonal axes; we shall restrict our considerations to one axis only. The
simplest gyro drift model, discussed for example by Dushman [5], consists
merely of a low-pass filter fed by white Gaussian noise. The output used
for navigational calculations is the sum of the angular drift rate é(t),
and the angular rate of change Q(t) impressed on the gyro by the motion

of the aircraft. The dynamic equations for this model are given by:
e(t) = Fé(t) + g(t) , (31)
y(t) = é(t) + () , (32)
where F 1is a constant, and £ 1is Gaussian white noise. The gyro will
be considered defective if the variance of £ exceeds a certain value.
Suppose that the flight path of the aircraft is determined before takeoff:
this implies that there is a predetermined 'nominal' angular rate of
change Q(t) for the flight. If the pilot tries to fly on his pre-

determined flight path as closely as possible, let us suppose (rather

nalvely) that the error in Q(t) is a white Gaussian random variable:
pa(t) = a(e) - &) 5 plan(e)} = N {0,020} . (33)

We use as the measurements for the fault detection scheme samples of the

-18-




difference
z(t) = y(t) - Q(t) = &(t) + a(t) . (34)

Althouéh apparently now we can go straightforwardly through with deriving
the equations for the fault detector, if we examine the relative magnitudes
of the parameters of the gyro model we find ourselves in trouble. As typical

figures we give:

Correlation time of & 0.5 hr.

Mean square value of & 0.01°/hr. (no fault)

0.05°/hr. (fault)

\\"4

Correlation time of AQ 5 secs.

Mean square value of AQ 2°%/sec.

We see that although we can indeed treat AR as white because it has a
relatively very small correlation time, its mean square value is 6 orders
of magnitude higher than that of é& . Hence it will be very difficult to
detect any change at all in the variance of £(t).

Fortunately we can take advantage of a current trend of thought
which advocates a triplicated navigational system to attain higher reli-
ability. If we assume such a system, we can say that to a large extent
A} 1is the same for each subsystem of the triple. We can thus remove its
effects by forming the differences between the outputs of the three sys-
tems. Figure 3. shows how the three systems are interconnected.

If we assume that Qhe values of F for each system are negligibly

different, then

-19-



FIG. 3 INTERCONNECTIONS OF THREE GYRO SYSTEMS
FOR FAULT DETECTION. ( ONE AXIS ONLY)




i) = B + wio)
s 1i=1,2,3 , (35)
zi(t) - xi(t) + vi(t)

where

and the superscripts index the subsystems. Hopefully the differences

v1 = AQl - AQZ H v2 = ... etc. ,

will now have a variance which is of a comparable order of magnitude to
that of w . In the absence of available figures we have assumed that
this is so, and treat the variance as a parameter in the ensuing tests.

Furthermore, vi is much more likely to be a white noise since all
long term effects in AQ will be cancelled out.

By sampling the output we may use the discretized version of Eqn. (35)

S+ 1) = oxt) + vk

s 1=1,2,3 . (36)
) = ) + viw

From now on we shall consider only one of the three sets of equations (36), and

drop the i-superscript. Let the variances of w and v be denoted by

Var{w} = Q, (faultfree)

Q (faulty) ; (37)

Var{v} = R R

<21~




where the system i8 normalized so that Qp=1. Avalue of ¢ =0.8 was
used, implying a sampling period of about 3% minutes. There is now no
obstacle to applying any of the SPRT's previously described to detecting
whether a change has occurred in Q .

Two of the tests have been evaluated by digital simulation for this
gystem:

(1) the 'continuous test';

(i1) the 'exact test' with p{*‘lo} = 0 , implying that the system is
known not to be faulty before the start of the test.
The 'occasional test' was not separately evaluated because the results are
very similar to those of the 'continuous test'.

Taking the 'continuous test' first, two average sample numbers were
evaluated by a Monte-Carlo method:

(a) the average number of samples ﬁB required at the start of the
test to reach a threshold (threshold B with high probability);

(b) the average number of samples ﬁA required to move from threshold
B to threshold A at the advent of a fault.
Figure 4. shows a typical run during the computer simulation of the test.
The full curves shown in Figures 5 through 8 show the variation in EA
and ﬁB due to changes in the error probabilities, ratio of faultfree to
faulty input variances, and variance of observation noise. These curves
were obtained by application of the results of the Appendix. The dis-
crete points marked are the results of the Monte-Carlo simulatioms:
reasonable agreement is shown. Generally an increase in sample number

results from:

(1) a reduction of the error probabilities o and B8 ; or
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(1i) an increase in the variance of the observation noise R ; or

(111) a smaller increase in the input variance Q at the appearance
of a fault.

The 'exact test' has been investigated less extensively. Figure 9.
summarizes the results which have been obtained for the average sample
number: it is evident that the improvement gained by the use of this
test as opposed to the 'continuous test' is discernible but not very
great. A curious result is that this test takes a very long time to reach
the decision that no change has occurred. This can be explained by noting
that in Eqn. (22), (ignoring the second term since p{‘*lo} =0), if ‘*0
is true, on average the summands are less than unity and decrease as the
number of multiplicands in the repeated product'increases. The dominant

ple(n + 1)/# )
term 1is thus 3-. ole(n + j)/**o} which only goes down roughly as

1
I
where j 1is the number of steps since the start of the test.

Since the simplified tests consist mainly of the operations of addi-
tion and multiplication, it should soon become feasible to incorporate
this type of fault detection feature as one of the duties of an on-board
digital computer, especially as the computational algorithms involved may

already embody Kalman filters to improve measurements from the gyro systems.

APPENDIX. Calculation of Average Sample Numbers for 'Continuous Test'

To determine the average sample numbers required for detection under

each of the two hypotheses *410 and ’#0 , we first need to know the

average values of the increment in the probability ratio ek at each
stage in the test. In other words, using the logarithmic form for con-

venience, we need to obtain expressions for

-28-
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‘10 %
n
at time k=n . (38)
g €2 82
L0 _ 1710 0
o = By {108 o 2|2 |}
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We shall treat only the scalar case in the derivation, although it is
possible to generalize.

Let the system and filter equations be given by

x(n + 1) = ¢x(n) + w(n) ; Var{w(n)} = q; or q (39)
z(n) = x(n) + v(n) ; Var{v(n)} = r (40)
X (n+1) = wiii(n) + koz(n + 1) (41)
where ¥, = ¢{1 - k) . o

0 ¥

First we derive the expectations of three quantities.
(1) E{z2@)} .
From Eqns. (39) and (40)
1

_.n ne i
x(n) = ¢'x(0) + ] ¢wn-1i-1) ,
1=0

E{z%(n)} = E{x’)} + ¢ .

Ignoring the initial term x(0)

n-1 n-1
ExZ(m) = B ] olwtn -1 - DI = ] 42
i=0 {=0

-30-
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and in the limit:

Lim E{zZ(n)} = —S—sr . (42)
n-ree l-9

(ii) E{z(n).x(n - 1)} .

n-1 i
z(n) = v(n) + ¢"x(0) + J ¢w-1i-1) ,
i=0
and from Eqn. (41)
-1 n-2 1
x(n - 1) = " T%(0) + } y'kz(n - 1 - 1)
i=0

Again ignoring the initial terms:

. n-1 i n-2 i
E{z(n)x(n - 1)} = E{ Z ¢win~1-1). z v kz(n -1 - 1)}
i=0 i=0
n~-1 { , . n=2 1 n-1i-2 j
=e{ ) ¢w-i-1D-7 vk J ¢wn-~1i-2-3}
i=0 i=0 4=0
n-2 n-i-2 .
-k z ¢n—i—2 Z ¢an-i—2_3-q ;
i=0 j=0
and in the limit:
" ¢kq 1
Lim E{z(n)x(n - 1)} = . (43)
N+ l"¢2 1- ¢y
2
(ii1) E{x"(n - 1)} .
n-2
E{ﬁz(n - 1)} = E{ Z wikz(n -1 - 1)}2
i=0

-31-



n-2 n-2
E(%>(n - 1)} = k2E{ ) wix(n -1i- 1)}2 + $r ) wZi
i=0 i=0

n-2 n-1-2 n-2
= k2E{ ) wi ) ¢jw(n -1-2- j)}2 + Kr ) wZi
i=0 j=0 i=0
n-2 -i-2 2 n-2
. 2
-quZ{Z wj¢n21j}+k2rzwi :
1=0 { 3=0 =0
and in the limit
~2 k2 {1 + ¢y} kzr
Lim E{x"(n - 1)} = > 4 > + 3 . (44)
n-ee A -¢7)1 =)A= o) 1 -9
We may write Eqns. (38) as
% 1 1 o 2
ulO - 10g a-l—(; - -i [1 - '_2' M- {Z(n) - ¢x0(n - 1)}] °
% 10
(45)
% 1|1 . 2
up = log B—;(—)- -3 7 Ey {z(n) - ¢x10(n -1} -1 :
010 0

and substituting in Eqns. (42) through (44) to obtain the asymptotic values:

g
0 1
Mg = log 50 2l = vyt
(46)
g
g = log 0 —‘%{vo 1} :
10

-32-




where

2
N S 2¢ kgqy
R (1 - ¢ - ovp)
2 2
2 kOql{l + ¢¢0} kor
+o 2 2 + P
(1 -06Q - ygd @ = dvy) 1-9y,| °
and
242K
99 10%
vo = 3 +r - 3
1- ¢ (1 - ¢ )(l - ¢¢10)
2 2
kI q-{1 + ¢yp. .} kS .r
K 10% 10 4 —10

2 2 2
We can now find the average sample numbers:

NB ¢ the average number of samples required to reach any threshold

from the start of the test, assuming “0 is true;

ﬁA ¢ the average number of samples to move from threshold B to

threshold A when ‘“io becomes true.

These sample numbers are given by

ﬁB = [0 log A+ (1 - a) log B]/uo ; 7

ﬁA = [log A - log B]/u10 ’ (48)

where A and B are defined as in Sections 3 and 4. It should be noted

that the expression for ﬁA does not take any account of the fact that

-33.



ek may stay on the threshold B for a few samples before moving to
threshold A .
The results of this Appendix are also applicable to the 'occasional

test'.
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